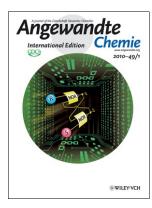


Redox-active monolayers ...


... form the basis of a solid-state setup that is able to mimic the input/output characteristics of electronic circuits. In their Communication on page 169 ff., M. E. van der Boom and co-workers demonstrate sequential logic operations controlled by multiple chemical inputs, with one circuit equivalent to a set–reset latch—one of the fundamental parts in random access memory. The kind of logic (combinatorial or sequential) can be controlled by keeping the current state static or dynamic.

Inside Cover

Graham de Ruiter, Elizabetha Tartakovsky, Noa Oded, and Milko E. van der Boom*

Redox-active monolayers form the basis of a solid-state setup that is able to mimic the input/output characteristics of electronic circuits. In their Communication on page 169 ff., M. E. van der Boom and co-workers demonstrate sequential logic operations controlled by multiple chemical inputs, with one circuit equivalent to a set–reset latch—one of the fundamental parts in random access memory. The kind of logic (combinatorial or sequential) can be controlled by keeping the current state static or dynamic.

